

Distributed Systems Seminar at Charles
University in Prague, Nov 2016

gRPC - A solution for RPCs by
Google

Jan Tattermusch - gRPC Software Engineer

 @grpcio

● Software Engineer at Google (since 2013)
● Working on gRPC since Q4 2014
● Graduated from Charles University (2010)

Contacts

● jtattermusch on GitHub
● Feedback to jtattermusch@google.com

About me

https://github.com/jtattermusch
https://github.com/jtattermusch
mailto:jtattermusch@google.com

 @grpcio

Google has an internal RPC system, called Stubby

● All production applications use RPCs
● Over 1010 RPCs per second in total
● 4 generations over 13 years (since 2003)
● APIs for C++, Java, Python, Go

What's missing

● Not suitable for external use (tight coupling with internal tools & infrastructure)
● Limited language & platform support
● Proprietary protocol and security
● No mobile support

Motivation: gRPC

 @grpcio

What's gRPC
● HTTP/2 based RPC framework
● Secure, Performant, Multiplatform, Open

Multiplatform

● Idiomatic APIs in popular languages (C++, Go, Java, C#, Node.js, Ruby, PHP,
Python)

● Supports mobile devices (Android Java, iOS Obj-C)
● Linux, Windows, Mac OS X
● (web browser support in development)

OpenSource

● developed fully in open on GitHub: https://github.com/grpc/

https://github.com/grpc/

 @grpcio

Build distributed services (microservices)

● In public/private cloud
● Google's own services

Client-server communication

● Mobile
● Web
● Also: Desktop, embedded devices, IoT

Access APIs (Google, OSS)

Use Cases

Service 1

Service 2

Service 3

Service 4

 @grpcio

● Streaming, Bidirectional streaming
● Built-in security and authentication

○ SSL/TLS, OAuth, JWT access
● Layering on top of HTTP/2 standard

○ Performance: Binary protocol, Stream multiplexing
○ Interoperability with 3rd party proxies, tools, libraries...

● Flow control
● Rich features

○ Load balancing, Tracing, Tooling ecosystem (cmdline tool)...

Key Features

 @grpcio

● Lingua franca for representation of structured data at Google
● Provides an IDL and serialization format for gRPC (one can still opt-out)
● Open-sourced in 2008 and being improved since then
● Language & Platform Neutral
● Extensible (and backward compatible)
● Much more efficient than XML or JSON (space & parsing speed)

message Person {

 string name = 1;

 int32 id = 2;

 string email = 3;

 repeated PhoneNumber phones = 4;

}

Detour: Google Protocol Buffers

 @grpcio

message Person {

 string name = 1;

 int32 id = 2;

 string email = 3;

 repeated PhoneNumber phones = 4;

}

message PhoneNumber {

 string number = 1;

 PhoneType type = 2;

}

enum PhoneType {

 MOBILE = 0;

 HOME = 1;

 WORK = 2;

}

Protocol Buffers: Messages

 @grpcio

service Greeter {

 rpc SayHello (HelloRequest) returns (HelloResponse) {}

}

service RouteGuide {

 rpc GetFeature(Point) returns (Feature) {}

 rpc ListFeatures(Rectangle) returns (stream Feature) {}

 rpc RecordRoute(stream Point) returns (RouteSummary) {}

 rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}

}

Protocol Buffers: Services

 @grpcio

gRPC Concepts: Core Protocol

Initial
Metadata Msg

Status & Trailing
Metadata

Client → Server

Server → Client

Msg End of
Stream

Initial
Metadata MsgMsg Msg

 @grpcio

Full stack implementations

● C/C++
● Java
● Go

Architecture: Native stack

gRPC Core

Http 2.0

SSL

Code Generated API

Application Layer

Framework Layer

Transport Layer

 @grpcio

C#, Node.js, Ruby, PHP,
Python, Obj-C

Benefits

● Code sharing
● Interoperability
● Performance
● Security
● Team structure

Architecture: "Wrapped" stack

Generic Low Level API in C

Python

Code-Generated Language Idiomatic API

Obj-C, C#, C++,
...Ruby PHPPython

gRPC Core in C

Http 2.0

SSL

Language Bindings

Code Generated

Ruby PHP Obj-C, C#,
C++,...

Application Layer

Framework Layer

Transport Layer

 @grpcio

Channel channel = new Channel("127.0.0.1:50051", ChannelCredentials.Insecure);

var client = new Greeter.GreeterClient(channel);

String user = "you";

var reply = client.SayHello(new HelloRequest { Name = user });

Console.WriteLine("Greeting: " + reply.Message);

Example: C# client

 @grpcio

Server server = new Server

{

 Services = { Greeter.BindService(new GreeterImpl()) },

 Ports = { new ServerPort("localhost", Port, ServerCredentials.Insecure) }

};

server.Start();

Example: C# server 1

 @grpcio

class GreeterImpl : Greeter.GreeterBase

{

 // Server side handler of the SayHello RPC

 public override Task<HelloReply> SayHello(HelloRequest request, ServerCallContext context)

 {

 return Task.FromResult(new HelloReply { Message = "Hello " + request.Name });

 }

}

Example: C# server 2

 @grpcio

var call = client.SubscribeForUpdates(request);

var responseStream = call.ResponseStream;

while (await responseStream.MoveNext())

{

 SubscribeResponse update = responseStream.Current;

 Console.WriteLine("Received update: " + update.ToString());

}

Example: C# server streaming

 @grpcio

Tutorials in all languages are available on http://grpc.io

Example

http://grpc.io

 @grpcio

We've launched GA in August 2016!

● Basic features in all languages + stable API
● Easy installation
● Stability
● Baseline performance
● In production with Google APIs: Cloud Bigtable, Cloud PubSub, Speech, ...

○ Client libraries available in several languages
● In production with various apps: Allo, Duo
● Used by many external companies/projects:

○ OSS: etcd, Docker containerd, cockroachdb
○ Square, Netflix, YikYak, Carbon 3D, Lyft
○ Cisco, Juniper, Arista

Current Status

 @grpcio

Exciting times are coming:

● Usability improvements
● Better performance
● More Google APIs accessible through gRPC
● More internal Google services running on gRPC
● More external adoption
● Bigger ecosystem around gRPC (Google, OSS)
● Rich features

What's Next

 @grpcio

● Command Line Tool
● Tracing
● Load Balancing
● Retries
● Customizable name resolution
● Compression
● Resource Limits
● RPC Fairness
● ...

What's next: Rich Features

 @grpcio

● Different priority for different languages
○ "scalable languages": C++, Java, Go, C#

● What we measure
○ Latency & Throughput
○ Unary & Streaming
○ 8core & 32core

● Public dashboard continuously populated with
benchmark results
○ data based on freshest upstream/master
○ see improvements, track regressions

Performance

 @grpcio

Latency (secure connection)

● Unary: Sub 1ms latency for all languages (C++ 200μs)
● Streaming: C++ 150μs

Throughput (secure connection)

● Unary 8core: 370K QPS (C++)
● Unary 32core: 1.5M QPS (C++)
● Streaming 32core: 3.5M QPS (C++)

https://performance-dot-grpc-testing.appspot.com/explore?dashboard=57608
20306771968

Performance: cont'd

https://performance-dot-grpc-testing.appspot.com/explore?dashboard=5760820306771968
https://performance-dot-grpc-testing.appspot.com/explore?dashboard=5760820306771968
https://performance-dot-grpc-testing.appspot.com/explore?dashboard=5760820306771968

 @grpcio

Performance: Current

 @grpcio

Performance: Improvement over 6 months

 @grpcio

gRPC: What does "g" stand for?

Quiz

 @grpcio

v1.0.0 - gRPC

v1.1.0 - good RPC

…..

"g" stands for

 @grpcio

● https://github.com/grpc

● BSD licensed

● We welcome pull requests

Contact us:

● grpc-io@googlegroups.com

● Website: http://grpc.io

Protobuf

● https://github.com/google/protobuf

Contributing

https://github.com/grpc
https://github.com/grpc
mailto:grpc-io@googlegroups.com
mailto:grpc-io@googlegroups.com
http://grpc.io
https://github.com/google/protobuf
https://github.com/google/protobuf

 @grpcio

Google Summer of Code

Papers (e.g. on performance)

Build your own services & apps!

Opportunities

Questions?
Thanks!

